
 CAMeL: Carnatic Percussion Music Generation Using N-Gram
Models

Konstantinos Trochidis Carlos Guedes Akshay Anantapadmanabhan Andrija Klaric
 New York University
 Abu Dhabi
 kt70@nyu.edu

 New York University
 Abu Dhabi
carlos.guedes@nyu.edu

 Independent New York University
 Musician Abu Dhabi
akshaylaya@gmail.com ak4867@nyu.edu

ABSTRACT

In this paper we explore a method for automatically gen-
erating Carnatic style rhythmic. The method uses a set of
annotated Carnatic percussion performances to generate
new rhythmic patterns. The excerpts are short percussion
solo performances in ādi tāla (8 beat-cycle), performed in
three different tempi (slow/moderate/fast). All excerpts
were manually annotated with beats, downbeats and
strokes in three different registers — Lo-Mid-Hi. N-gram
analysis and Markov chains are used to model the rhyth-
mic structure of the music and determine the progression
of the generated rhythmic patterns. The generated com-
positions are evaluated by a Carnatic music percussionist
through a questionnaire and the overall evaluation pro-
cess is discussed. Results show that the system can suc-
cessfully compose Carnatic style rhythmic performances
and generate new patterns based on the original composi-
tions.

1. INTRODUCTION
Automatic generation of music has been a focus of com-
putational music research for a long time. Researchers
have been designing systems to imitate or compose vari-
ous musical styles from Classical to Jazz music [1], [2].
Despite the progress achieved so far in the development
of generative music systems for Western music genres
there is limited work regarding methodologies of auto-
matic generation of music in non-western styles.
In this paper, we propose CAMeL an automatic music
generation system, which focuses on the generation of
Carnatic style rhythms. Carnatic music is an art music
tradition from South India with a long history, which has
its own musical grammar and significant musicological
literature [3]. Carnatic music has a very well defined
rhythmic framework and an interesting rhythmic struc-
ture, which makes it interesting and challenging to ex-
plore in an automatic music generation system. The ap-
proach proposed in this paper is focused on percussion-
based Carnatic music style rhythms using a set of anno-
tated training data of music excerpts. The annotations
include the stroke register (Lo-Mid-Hi), the inter-onset
interval duration of the strokes and the amplitude of the
music excerpts. By extracting these features the system is
capable of automatically generating new rhythmic pro-
gressions stylistically similar to the training composi-

tions. N-gram analysis and statistical learning is used to
model the rhythmic structure using the extracted features.
Markov chains are then used to build the rhythmic devel-
opment and describe the pattern transition likelihoods of
the generation sequences. The system generates rhythmic
patterns based on an n-gram input. If a five-gram analysis
is selected then the algorithm generates the strokes using
the transition probability of the five-grams.
The proposed method for generating rhythmic pattern
progression of Carnatic style music was evaluated by a
professional Carnatic percussionist — Akshai Anantap-
admanabham. The same percussionist composed and per-
formed the datasets for training the system. The evalua-
tion is based on feedback of the rhythmic structure and
development of the generated sequences compared to a
human-based performance. The results of the evaluation
provide insights into the rhythmic organization and inter-
pretation of the generated rhythmic patterns.
Musicians can use the proposed system for creative pur-
poses in their performance and training. It can be also
used as a tool in music education as a means of actively
enculturing lay people into this music style; for example,
by creating software applications that include generative
systems of Carnatic music, allowing users to “play” Car-
natic music percussion on mobile devices and get en-
trained in this style by getting familiar with the underly-
ing rhythmic structure and grammar of this music.
The paper is organized as follows: section 1.1 presents
background information on the rhythmic structure in
Carnatic music while section 2 presents previous research
on automatic music generation methods. Section 3 de-
scribes the proposed approach while section 4 discusses
the evaluation of the method. Discussion and Conclusions
are drawn in sections 5 and 6 respectively.

1.1 Rhythmic structure in Carnatic music
The rhythmic framework of Carnatic music is based on
the tāla, which provides a structure for repetition, group-
ing and improvisation. The tāla consists of a fixed time
length cycle called āvartana, which can also be called the
tāla cycle. The āvartana is divided into equidistant basic
time units called akṣaras, and the first akṣara of each
āvartana is called the sama [3]. Two primary percussion
accompaniments in Carnatic music are the Mridangam
and Kanjira. The Mridangam is made of a cylindrical
shell with stretched membranes on either side of the in-

strument body. While one side is loaded with a black
paste that creates a pitched tone, the other membrane cre-
ates a bass-like sound. The Kanjira on the other hand is a
frame-drum, with a tonally rich membrane. Unlike the
Mridangam, the Kanjira is not tuned to a specific key, but
it can cover a wide range of frequencies with especially
rich lower frequencies. The rhythmic complexities of
Carnatic rhythm are especially showcased during the solo
or taniavartanam. First, each instrument performs sepa-
rately and then they trade off in shorter cycles with a pre-
cise question-answer like session, followed by a joint
climactic ending. All training excerpts used in the pro-
posed generation method were performed by the Kanjira
drum in the context of a concert solo. We decided to use
the Kanjra compositions as a training corpus because the
strokes had a simpler frequency distribution compared to
the Mridangam.

2. RELATED WORK
Probably the most popular study of musical style imita-
tion is David Cope’s Experiments in Musical Intelligence
(EMI) system. EMI analyzes the score of MIDI sequenc-
es in terms of patterns and stores the patterns in a data-
base where the system learns the style of a composer giv-
en a number of training examples [4]. Bel and Kippen [5]
present the Bol Processor, a software system that models
tabla drumming improvisation. The system is based on a
linguistic model derived from pattern languages and a
formal grammar that has the ability to handle complex
structures by using a set of training examples. Dias and
Guedes in [1] discuss a contour based algorithm for real
time automatic generation of jazz walking bass lines,
following a given harmonic progression. The algorithm
generates melodic phrases that connect the chords in a
previously defined harmonic grid, by calculating a path
from the current chord to the next, according to user-
defined settings controlling the direction and range of the
melodic contour. Biles in [2] developed a generative sys-
tem for composing jazz solos based on a genetic algo-
rithm, which starts with some initial musical data initial-
ized randomly or by human input. Using a repeated pro-
cess similar to biological generation the system produces
similar musical data. Dias et al [6] present the GimmeD-
aBlues app that allows the user to play jazz keyboard and
solo instruments along a predefined harmonic progres-
sion, by automatically generating the bass and drums
parts, responding to the user’s activity. Assayag, Dubnov
and Delerue [7] proposed a dictionary based universal
prediction algorithm that provides an approach to ma-
chine learning in the domain of musical style. Operations
such as improvisation or assistance to composition can be
realized on the resulting representations. The system uses
two dictionaries, the motif and continuation. A generation
algorithm is used to predict a sequence based on the motif
dictionary. The continuation dictionary gives probabili-
ties of various continuations and is used to determine the
next symbol. Pachet discusses the continuator [8] an in-
teractive imitation system, which generates new melodic
phrases in any style, either in standalone mode or as con-
tinuations of musician’s input. The system is based on an
incremental parsing algorithm to train a variable-length

Markov chain that stores possible probabilities of se-
quences. The system progressively learns new phrases
from a musician and develops a robust representation of
his or her style. A framework for generating similar var-
iations of guitar and bass melodies is proposed in [9]. The
melody is initially segmented into sequences of notes
using onset detection and pitch estimation. A set of hier-
archical representations of the melody is estimated by
clustering the pitch values. The pitch clusters and the
metrical locations are then used to train a prediction
model using variable-length Markov chain.

3. SYSTEM IMPLEMENTATION

3.1 Dataset
The training corpus consisted of 8 percussion solo
compositions in ādi tāla (8 beat- cycle) in three different
tempo levels (slow/moderate/fast). The compositions
were performed by Akshay Anantapadmanabham, in the
Kanjira. These examples were recorded using a
metronome.
All excerpts were manually annotated using Sonic
Visualizer [10] including the sāmā and the other beats
comprising the tāla. Each stroke event was coded as a
string based on its register (Lo-Mid-Hi), the inter-onset-
interval (IOI) between strokes and a value indicating the
velocity of the stroke. The fourth author annotated the
music excerpts by using the following process: The met-
ronome was recorded in a separate channel and used as
reference for each performance. A note onset transfor-
mation was estimated for the audio track by which note
onsets were detected. By looking at the note onsets, the
spectrogram of the sound and by listening to it at a re-
duced playback speed, the different types of strokes were
categorized into three categories and the annotation
marker positions were manually adjusted. Based on the
spectrogram analysis, the frequency spectrum of the
strokes was divided into three frequency bands (low, mid
and high) depending on the frequency content of each
stroke (110-190 Hz for low, 190-600 Hz for mid and 600-
1200 Hz for high strokes). Although the Kanjira has a
richer variety of registers and strokes, the reduction to
three registers was a step to simplify the different stroke
definition. This reduction was validated by Anantap-
admanabham as a process to faithfully encode the differ-
ent strokes in the Kanjira. The normalized velocity values
of the strokes were obtained by computing an onset de-
tection function, and estimating its amplitude level with a
value between 0.2 and 1 according to the strength of the
stroke. In the present work, the complex domain onset
detection [11] was used to compute the onset detection
function implemented in the Vamp-plugins in version of
Sonic Visualizer. Table 1 lists the coded feature values
used to model each stroke event.

Features Value
Register Lo-Mid-Hi

IOI duration (sec) T1 = 2

 T2 = 1.75

 T3 = 1.66

 T4 = 1.5

 T5 = 1.33

 T6 = 1.25

 T7 = 1

 T8 = 0.75

 T9 = 0.66

 T10 = 0.5

 T11 = 0.33

 T12 = 0.25

 T13 = 0.16

 T14 = 0.125

 Velocity V1 (0.2)
V2 (0.5)
V3 (1.0)

Table 1. Features for modeling stroke events.

3.2 N-gram model
All coded stroke events from the compositions were
merged in a single training corpus to learn a statistical
model. We used n-gram analysis to model the underlying
rhythmic progression of the strokes in the training data.
The general n-gram definition is given in (1), while the
representations of a unigram, bigram and trigram are giv-
en in (2), where s denotes a stroke event.

 p(si s1,..., si−1) = p(si si−n+1,..., si−1) (1)

unigram :
bigram :
trigram :

p(si)
p(si si−1)

p(si si−2 , si−1)

 (2)

An example of a trigram encoding the strokes is given
below:

MidT10V1 LoT12V3 LoT12V3

This trigram consists of three stroke events. The first
stroke has a Mid register with an eighth note duration
performed with 0.2 velocity followed by two strokes with

Lo register and sixteenth note duration performed with
1.0 velocity.
We estimated the n-gram probabilities up to a five-gram
by counting the frequency of the strokes on the training
corpus where N is the total numbers of stroke events in
the training data. The unigram and bigram probabilities
are calculated using equations (3) and (4) where sa de-

notes a particular stroke event, sb its preceding stroke and

c the count of a stroke:

 p̂(sa) =

c(sa)
N

 (3)

 p̂(sb sa) =
c(sa, sb)
Σsbc(sa, sb)

≈
c(sa, sb)
c(sa)

 (4)

The n-gram model provides the transition probabilities
between stroke events. For example, consider the case of
a bigram model where two stroke events are present. The
first tagged as Mid stroke register with a quarter note
duration and with 0.2 velocity value and the second as a
Lo stroke register with a sixteen note duration and veloci-
ty value of 0.2. What would the probability be that the
next stroke will be a Lo stroke register with a sixteen note
duration and high velocity given the previous stroke
events representation?
We computed all the n-grams probabilities up to a five-
gram because we wanted to test how past information and
size of accumulated memory could affect and change the
generation process. All n-gram probabilities were stored
in tables to be used later during the generation process.
The generation process used these data to generate new
strokes events sequentially. Given a sequence of strokes,
a stroke event is generated based on the weighting proba-
bility of the most likely stroke to follow given the previ-
ous strokes.

3.3 Generation

The generation process depends on the n-gram selection
of and on the number of stroke events. If a trigram is se-
lected the generation starts with the first trigram of the
training file. The next stroke event is generated based on
the probabilities of trigrams that start with the last two
stroke events in the generated sequence. When the stroke
event is generated the algorithm looks for the next last
two stroke events in the sequence to generate the next
stroke and search again for the highest probability of tri-
grams that start with the last two stroke events. This pro-
cess is iterative until the number of initial selected stroke
events is reached. The overall process is presented in
Figure 1.

Figure 1. Generation process using a trigram model and
probability estimation.

4. EVALUATION
Several approaches for the evaluation of generative music
systems have been proposed in the past. Researchers have
tried to use Turing tests [12] to compare the output be-
tween computer-aided and non-computer aided composi-
tions by measuring the degree of perceptual quality. This
model has been criticized in the past for its application in
executing and evaluating listener surveys [13]. Pearce
and Wiggins [14] use a set of musical examples to train a
genetic-algorithm based system. A discrimination test is
used to evaluate whether the output of the system can be
distinguished from the training compositions. Cont, Dub-
nov and Assayg [15] evaluate a generative system using
the same model as a classifier. The model is trained for a
particular style of music and outputs a probability to a
given music excerpt. A quasi-Turing test is used in [5] to
evaluate the Continuator. The evaluation is used to assess
to what extend a listener can determine that a melody
generated by the system was composed or played by a
human or by a machine. Collins [16] evaluates an algo-
rithmic system that creates electroacoustic art music by
using three expert composer judges. They evaluate the
system based on how music material was assembled its
form, structure and instrumentation. The authors in [9]
use a group of experts to evaluate an automatic guitar and
bass phrase continuation melody system. Their feedback
is related to the type of similarities and differences they
notice between the original and generated examples and
the aesthetic outcome.

Since we are interested in generating new sequences of
Carnatic music percussion from the training data and
there is no benchmark dataset for music generation per-
formance of other systems we decided to conduct a pre-
liminary evaluation based on the feedback of the musi-
cian who also provided the dataset. The fact that
Anantapadmanabham is an expert in Carnatic music per-
cussion and also provided the dataset that we used for
analysis provides a unique set of conditions to do a pre-
liminary evaluation of the generative model and this ap-
proach.

A questionnaire was prepared and presented to Anantap-
admanabham. The new sequences were generated using
different n-grams (bigram, trigram, fourgram and five-
gram) with duration of 2 minutes each. He was asked first
to listen to the compositions as many times needed to get
familiar with the rhythmic structure and development of
the excerpts and then answer the questionnaire.
Examples of the generated excerpts can be downloaded at
https://github.com/Trochidis/CAMeL-Carnatic-
Percussion-Music-Generation-Using-N-Gram-Models.
Anantapadmanabham was first asked to judge if the gen-
erated compositions contained recognizable Carnatic mu-
sic rhythmic patterns, which he positively answered. The
next question of the form was related to the short-term
level of rhythmic structure asking if the rhythmic patterns
were occurring in metrical appropriate positions. He an-
swered that sometimes they were and others they were
not. Based on his feedback there were certain strokes,
particularly in the percussive roll sections of the generat-
ed compositions that they were repeated consecutively.
This sometimes created a feeling that the same succession
of strokes kept playing without variation which does not
usually happen in the rhythmic structure of Carnatic mu-
sic. The next question was related to the long-term evolu-
tion and rhythmic progression asking if the rhythmic
structure of the generations evolved in time as expected
in this style. He answered that most of the generated
compositions in particular the ones with the shorter
memory (bigram-trigram) failed to capture the long-term
rhythmic structure and the correct transition between
longer rhythmic structures.
His additional comments were that n-grams with larger
memory such as fourgrams and fivegrams were more
successful in capturing Carnatic rhythm groupings com-
pared to bigrams or trigrams and contained more rhyth-
mic patterns in resemblance with the original Carnatic
music patterns.

5. DISCUSSION
This work presents a method for automatically generating
new Carnatic style rhythmic patterns based on a set of
training examples. An n-gram analysis and Markov
Chains are used to model short and long-term patterns
and represent rhythmic progressions. Based on the ex-
pert’s feedback the method is able to generate recogniza-
ble Carnatic-style rhythmic patterns with some success.
The evaluation indicates that the n-gram analysis is more
successful on capturing short-term rhythmic patterns
compared to long-term ones. Moreover, larger n-grams
such as fourgrams or fivegrams generate more appropri-
ate and interesting Carnatic style rhythmic patterns. This
is due to the fact that they are more successful in model-
ing the long-term pattern transitions compared to shorter
structures such as unigrams and bigrams. An improve-
ment over the current method will be to implement a
cluster analysis to the larger n-grams i.e fivegrams or
sevengrams and generate rhythmic patterns based on the
cluster transitional probabilities. This might improve the
rhythmic representation and progression of long-term
rhythmic structures compared to the one implemented in
our current system.

Input
MidT12V1 MidT14V1 LoT8V1

Output
MidT12V1 MidT14V1 LoT8V1 MidT14V1

Generation ….

Next Possible Trigrams
MidT14V1 LoT8V1 MidT14V1 0.6667
MidT14V1 LoT8V1 HiT11V2 0.1111
MidT14V1 LoT8V1 MidT14V2 0.1111
MidT14V1 LoT8V1 LoT8V1 0.1111

Probability

Another approach to tackle the problem of long-term rep-
resentation of rhythmic progression is to use a Long
Short Term Memory Recurrent Neural Network (LSTM-
RNN) [17]. LSTM RNNs are capable of learning long-
term dependencies and have been used successfully in
language modeling and speech recognition. The LSTM
RNNs architecture is based on a dynamic memory with
cells that stores information about the previous states.
They can combine previous states and current memory to
make decisions and efficiently capture long-term depend-
encies by dynamically changing their memory.

6. CONCLUSION
In the present paper, a method for automatically generat-
ing Carnatic style rhythmic patterns is explored. By ex-
tracting features such as the stroke register (Lo-Mid-Hi),
inter-onset interval duration of the strokes and amplitude
of the strokes the system is capable of automatically gen-
erating new rhythmic progressions stylistically similar to
the training compositions. N-gram analysis and statistical
learning is used to model the rhythmic structure and build
the rhythmic development using the extracted features.
The generated outcome was evaluated by a professional
composer and percussionist of Carnatic music in terms of
rhythmic development and musical aesthetics. Feedback
from the evaluation shows that the method is capable of
generating new interesting Carnatic style rhythmic pat-
terns by training on previous data. Future work will test
the method on a larger dataset of recordings and evaluate
the effectiveness of the method by conducting a percep-
tual study using a group of professional Carnatic musi-
cians. Furthermore, we would like to perform a statistical
analysis of the evaluation results to test the percentage
and the strength of the generated excerpts that were posi-
tively evaluated by the human-experts. Finally, we aim to
test the method against other approaches such as cluster-
ing and deep belief networks.

7. REFERENCES
[1] R. Dias, C. Guedes, “A Contour-Based Jazz

Walking Bass Generator.” Proceedings of the Sound
and Music Computing Conference, 2013.

[2] J.A. Biles, “GenJam in Transition: from Genetic
Jammerto Generative Jammer”, International
Conference on Generative Art, Milan, 2002

[3] P. Sambamoorthy, South Indian Music Vol. I-VI,
The Indian Music Publishing House, 1998.

[4] D. Cope, Experiments in musical intelligence (Vol.
12). Madison, WI: AR editions, 1996.

[5] B. Bel & J.Kippen. Modelling music with grammas:
formal language representation in the Bol Processor.
Computer Representations and Models in Music,
Academic Press, pp.207-238, 1992

[6] R. Dias, T. Marques, G. Sioros and C. Guedes,
“GimmeDaBlues: an intelligent Jazz/Blues player
and comping generator for iOS devices”. in Proc.

Conf. Computer Music and Music Retrieval
(CMMR 2012), London 2012.

[7] G. Assayag, S. Dubnov, & O. Delerue. “Guessing
the composer’s mind: Applying universal prediction
to musical style”, In Proceedings of the International
Computer Music Conference, 1999, (pp. 496-499).

[8] F. Pachet. “The continuator: Musical interaction
with style”, in J. New Music Research, 2003, 32(3),
333-341.

[9] S. Cherla, H. Purwins, & M. Marchini, “Automatic
phrase continuation from guitar and bass guitar
melodies”, in Computer Music Journal, 2013, 37(3),
68-81.

[10] C. Cannam, C. Landone, & M. Sandler, “Sonic
visualiser: An open source application for viewing,
analysing, and annotating music audio files”, in
Proc. Int. Conf. on Multimedia, 2010, (pp. 1467-
1468). ACM.

[11] C. Duxbury, J.P Bello, M. Davies & M. Sandler,
“Complex domain onset detection for musical
signals”, in Proc. Digital Audio Effects Workshop
(DAFx), 2003, (No. 1, pp. 6-9).

[12] A. M. Turing, “Computing machinery and
intelligence”. Mind, 1950, 59(236), 433-460.

[13] C. Ariza, “The interrogator as critic: The turing test
and the evaluation of generative music
systems”, Computer Music Journal, 2009, 33(2), 48-
70.

[14] M. Pearce, and G. Wiggins, “Towards a Framework
for the Evaluation of Machine Compositions”, in
Proc. of the AISB01 Symposium on Artificial Intel-
ligence and Creativity in the Arts and Sciences.
Brighton, UK: SSAISB, 2001, pp. 22–32

[15] A. Cont, S. Dubnov, & G. Assayag, “Anticipatory
Individual Behavior-Anticipatory Model of Musical
Style Imitation Using Collaborative and Competitive
Reinforcement Learning”, Lecture Notes in Com-
puter Science, 2007, 4520, 285-306.

[16] N. Collins, “Automatic composition of
electroacoustic art music utilizing machine
listening”, Computer Music Journal, 2012, 36(3), 8-
23.

[17] N. Boulanger-Lewandowski, Y. Bengio and P.
Vincent, “Modeling Temporal Dependencies in
High-Dimensional Sequences: Application to
Polyphonic Music Generation and Transcription”, In
Proceedings of the 29th International Conference on
Machine Learning (ICML), 2012

